Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(50): eabn6025, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525492

RESUMO

Fatigue is a common adverse effect of external beam radiation therapy in cancer patients. Mechanisms causing radiation fatigue remain unclear, although linkage to skin irradiation has been suggested. ß-Endorphin, an endogenous opioid, is synthesized in skin following genotoxic ultraviolet irradiation and acts systemically, producing addiction. Exogenous opiates with the same receptor activity as ß-endorphin can cause fatigue. Using rodent models of radiation therapy, exposing tails and sparing vital organs, we tested whether skin-derived ß-endorphin contributes to radiation-induced fatigue. Over a 6-week radiation regimen, plasma ß-endorphin increased in rats, paralleled by opiate phenotypes (elevated pain thresholds, Straub tail) and fatigue-like behavior, which was reversed in animals treated by the opiate antagonist naloxone. Mechanistically, all these phenotypes were blocked by opiate antagonist treatment and were undetected in either ß-endorphin knockout mice or mice lacking keratinocyte p53 expression. These findings implicate skin-derived ß-endorphin in systemic effects of radiation therapy. Opioid antagonism may warrant testing in humans as treatment or prevention of radiation-induced fatigue.

2.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34117054

RESUMO

The current opioid epidemic warrants a better understanding of genetic and environmental factors that contribute to opioid addiction. Here we report an increased prevalence of vitamin D (VitD) deficiency in patients diagnosed with opioid use disorder and an inverse and dose-dependent association of VitD levels with self-reported opioid use. We used multiple pharmacologic approaches and genetic mouse models and found that deficiencies in VitD signaling amplify exogenous opioid responses that are normalized upon restoration of VitD signaling. Similarly, physiologic endogenous opioid analgesia and reward responses triggered by ultraviolet (UV) radiation are repressed by VitD signaling, suggesting that a feedback loop exists whereby VitD deficiency produces increased UV/endorphin-seeking behavior until VitD levels are restored by cutaneous VitD synthesis. This feedback may carry the evolutionary advantage of maximizing VitD synthesis. However, unlike UV exposure, exogenous opioid use is not followed by VitD synthesis (and its opioid suppressive effects), contributing to maladaptive addictive behavior.


Assuntos
Endorfinas , Transtornos Relacionados ao Uso de Opioides , Deficiência de Vitamina D , Analgésicos Opioides/farmacologia , Animais , Humanos , Camundongos , Vitamina D/farmacologia , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/epidemiologia , Vitaminas
3.
Sci Adv ; 7(14)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33811065

RESUMO

Humans and mice with natural red hair have elevated basal pain thresholds and an increased sensitivity to opioid analgesics. We investigated the mechanisms responsible for higher nociceptive thresholds in red-haired mice resulting from a loss of melanocortin 1 receptor (MC1R) function and found that the increased thresholds are melanocyte dependent but melanin independent. MC1R loss of function decreases melanocytic proopiomelanocortin transcription and systemic melanocyte-stimulating hormone (MSH) levels in the plasma of red-haired (Mc1re/e ) mice. Decreased peripheral α-MSH derepresses the central opioid tone mediated by the opioid receptor OPRM1, resulting in increased nociceptive thresholds. We identified MC4R as the MSH-responsive receptor that opposes OPRM1 signaling and the periaqueductal gray area in the brainstem as a central area of opioid/melanocortin antagonism. This work highlights the physiologic role of melanocytic MC1R and circulating melanocortins in the regulation of nociception and provides a mechanistic framework for altered opioid signaling and pain sensitivity in red-haired individuals.


Assuntos
Analgésicos Opioides , Nociceptividade , Animais , Cabelo , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/genética
4.
Cell Rep ; 19(11): 2177-2184, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28614705

RESUMO

The presence of dark melanin (eumelanin) within human epidermis represents one of the strongest predictors of low skin cancer risk. Topical rescue of eumelanin synthesis, previously achieved in "redhaired" Mc1r-deficient mice, demonstrated significant protection against UV damage. However, application of a topical strategy for human skin pigmentation has not been achieved, largely due to the greater barrier function of human epidermis. Salt-inducible kinase (SIK) has been demonstrated to regulate MITF, the master regulator of pigment gene expression, through its effects on CRTC and CREB activity. Here, we describe the development of small-molecule SIK inhibitors that were optimized for human skin penetration, resulting in MITF upregulation and induction of melanogenesis. When topically applied, pigment production was induced in Mc1r-deficient mice and normal human skin. These findings demonstrate a realistic pathway toward UV-independent topical modulation of human skin pigmentation, potentially impacting UV protection and skin cancer risk.


Assuntos
Melaninas/metabolismo , Pele/metabolismo , Raios Ultravioleta/efeitos adversos , Administração Tópica , Animais , Humanos , Melaninas/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...